Processing math: 100%

Social Icons

piątek, 28 grudnia 2012

Matura podstawowa, sierpień 2011, zadanie 9


Liczba log24+2log31 jest równa:
A. 0
B. 1
C. 2
D. 4

ROZWIĄZANIE:
W zadaniu skorzystamy z definicji logarytmu:logab=cac=b.
W ten sposób policzymy oba składniki sumy:log24+2log31.

Pytamy: dwójka do której potęgi daje czwórkę?log24=c2c=4
Oczywiście do potęgi drugiej:c=2.
Pytamy: trójka do której potęgi daje jeden?log31=c3c=1
Oczywiście do potęgi zerowej:c=0.

W ten oto sposób mamy:log24+2log31=2+20=2+0=2.


ODPOWIEDŹ: C.

Zadanie domowe:

Liczba log327+2log51 jest równa:
A. 1
B. 2
C. 3
D. 4





1 komentarz: