Social Icons

środa, 10 kwietnia 2013

Matura podstawowa, czerwiec 2011, zadanie 32


Podstawą ostrosłupa $ABCDS$ jest romb $ABCD$ o boku długości 4. Kąt $ABC$ rombu ma miarę $120^{\circ}$, $|AS|=|CS|=10$ i $|BS|=|DS|$. Oblicz sinus kąta nachylenia krawędzi $BS$ do płaszczyzny podstawy tego ostrosłupa.

ROZWIĄZANIE:
Oczywiście zaczynamy od porządnego rysunku, na którym zaznaczamy odpowiednie kąty. Staramy się także narysować trójkąt, z naszym kątem oraz podstawę.


Zacznijmy od podstawy i wyliczmy długości jej przekątnych a przynajmniej odcinki $AO$ i $OB$. Mamy do czynienia z rombem, a w nim przekątne przecinają się pod kątem prostym. Oczywiście $$|\measuredangle ABC|=2|\measuredangle ADO|$$ Tak więc: $$|\measuredangle ADO|=60^{\circ}.$$ Skorzystajmy z funkcji trygonometrycznych: $$sin60^{\circ}=\frac{|AO|}{4}$$$$\frac{\sqrt{3}}{2}=\frac{|AO|}{4}$$$$\frac{4\sqrt{3}}{2}=|AO|$$$$|AO|=2\sqrt{3}.$$Podobnie: $$cos60^{\circ}=\frac{|DO|}{4}$$$$\frac{1}{2}=\frac{|DO|}{4}$$$$\frac{4}{2}=|DO|$$$$|DO|=|OB|=2.$$

Weźmy teraz trójkąt $AOS$. Wyliczymy z niego wysokość ostrosłupa. Zachodzi przecież twierdzenie Pitagorasa:$$|AO|^2+|OS|^2=|AS|^2$$$$(2\sqrt{3})^2+H^2=10^2$$$$12+H^2=100$$$$H^2=88$$$$H=\sqrt{88}=2\sqrt{22}.$$

Przyszła pora na zielony trójkąt. $$sin\beta=\frac{|OS|}{|BS|}$$Odcinek $OS$ już mamy. Z twierdzenia Pitagorasa wyliczymy długość $BS$. $$|OS|^2+|OB|^2=|BS|^2$$$$(\sqrt{88})^2+2^2=|BS|^2$$$$|BS|^2=88+4$$$$|BS|^2=92$$$$|BS|=2\sqrt{23}$$Pozostało wstawić i uwymiernić: $$sin\beta=\frac{2\sqrt{22}}{2\sqrt{23}}=\frac{\sqrt{22}}{\sqrt{23}}=\frac{\sqrt{22}\cdot\sqrt{23}}{23}=\frac{\sqrt{506}}{23}.$$

Hmm... wynik brzydki, ale prawidłowy!


Zadanie domowe:
Podstawą ostrosłupa $ABCDS$ jest romb $ABCD$ o boku długości 4. Kąt $ABC$ rombu ma miarę $60^{\circ}$, $|AS|=|CS|=12$ i $|BS|=|DS|$. Oblicz sinus kąta nachylenia krawędzi $BS$ do płaszczyzny podstawy tego ostrosłupa.


Brak komentarzy:

Prześlij komentarz